
Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Emacs Portable Dumper

Daniel Colascione

March 14 2018

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

About me

Day job: Android performance team

For me: happiness slopes away from ring 0

Emacs development: both tool refinement and hobby

Got into developing the core as part of customizing
environment

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

What is Emacs?
Building and dumping
Performance
Modernization Project

What is Emacs?

Text editor

Mail reader

Document preparation system

Tetris platform

Text adventure

Floor wax

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

What is Emacs?
Building and dumping
Performance
Modernization Project

What is Emacs, really?

Runtime environment

Garbage collector
Interpreter
Compiler
Program loader

Lisp system

Intimate relationship between development, use
Save and restore whole system state
Closest modern analog might be IPython notebook

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

What is Emacs?
Building and dumping
Performance
Modernization Project

Build and run overview

Emacs dumps itself during build process
1 Build system makes proto-emacs called temacs
2 temacs loads loadup.el, which loads Emacs core
3 Create emacs executable from resulting process state

On emacs start, it’s as if loadup had already happened
Almost literally true

Can’t store open files
Can’t restore open windows

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

What is Emacs?
Building and dumping
Performance
Modernization Project

Why dump? Performance!

From scratch

$ time ./temacs -batch -Q --eval ’(kill-emacs)’ \

2>/dev/null

real 0m4.946s

Dumped

~/edev/trunk/src

$ time ./emacs -batch -Q --eval ’(kill-emacs)’

real 0m0.036s

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

What is Emacs?
Building and dumping
Performance
Modernization Project

Why care about performance?

Isn’t slow startup acceptable?

No: Emacs is often EDITOR: needs acceptable latency for
light cases
Startup snappiness affects perception of general performance
Previous slide is just core: packages can take much longer

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

What is Emacs?
Building and dumping
Performance
Modernization Project

Why care about performance?

Can’t we use the Emacs daemon?

Fine for some use cases: but requires setup
Shared environment not necessarily desirable
Persistent bloat: what if all programs did this?

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

What is Emacs?
Building and dumping
Performance
Modernization Project

Modernizing Emacs

Unexec is traditional dump implementation

Clever, but showing its age: 36 years old!
Dubious long-term maintainability

Replacement: pdumper

Goal: get rid of old unexec code
Requirements

no loss in performance
no loss in capability
reliance on normal, supported facilities that will keep working

Goals achieved!

Did most work in 2016
Finished a few months ago
Waiting for merge into mainline

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Dumping in Lisp systems

Emacs conceived as Lisp system

Lisp system tradition: dump and restore

Capability dates back to 1960s
Even modern Lisp systems like Allegro and SBCL have
dumpers
Emacs came from AI, lisp machine environment

Lisp systems had deep introspection support

Like Emacs, but for the whole OS, kernel and all
Dumping just an application of introspection

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

But unix was void* and without form

GNU Emacs needed to run on Unix

PROBLEM! Unix had zero introspection!

Bare-bones process abstraction
Just a bunch of bytes
No global dump and restore support

Core dumps don’t count

Lisp could run in a started process: but no startup help

Just imagine how long loadup took in the 80s!

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Unexec to the rescue

Unexec is a clever hack for implementing Lisp-style dumping
on Unix using a bare minimum OS help

Elegant and simple: takes advantage of details of existing
executable loader and file format

Fortunate Emacs had it: Unix won utterly

Pre-Unix OSes are like Precambrian biota
Weird, wonderful, and forgotten

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Program loading

First need to understand how programs run
1 Kernel creates blank address space
2 Kernel causes executable file to appear at known address in

the new address space
3 Kernel initializes a task structure

Registers set to known values
Program counter begins at well-known address inside the
program

4 Kernel context-switches to new task and begins executing

Same basic model used today

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Address space structure

Executable code (aka “text”) appears at address T

Data (variables, bss, etc.) appears at T+size(text)

Values come directly from executable file!

The stack starts on other end of the address space

Dynamic memory allocation is accomplished by growing the
data region

Data region grown as needed using sbrk

Malloc implementation carves out chunks of new memory

Daniel Colascione Emacs Portable Dumper

Normal address space layout: brand new process

0

code
data

segment stackbloat

virtual addresses

global
vars

executable
file

sbrk grows

Normal address space layout: active process

0

code data segment stackbloat

virtual addresses

global
vars

heap

executable
file

sbrk grows

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Unexec operation

temacs starts and runs normally

loads loadup.el and does a bunch of work

After this process completes, the process has

changed global variables in bytes mapped to temacs

executable
expanded its data segment to accommodate dynamic memory
allocation (see previous diagram)

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Unexec’s central trick

To make a dumped emacs, unexec
1 Copies temacs to emacs
2 Modifies emacs so its on-disk data segment size is the size of

the current in memory data segment size of the temacs

process
3 Copies the current temacs data segment to the new enlarged

data segment in the temacs executable

This way, the new executable “freezes” the result of whatever
it is that temacs did

1 Whatever temacs did, it’s reflected in the heap or in changes
to global variables

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Running a dumped Emacs

When the new emacs process executes, the kernel goes
through its normal logic

Maps data segment into memory...
...automatically mapping the initialized heap!
The last value of any global variable that temacs set appears
to be that variable’s initial value in emacs!

Heap grows normally as emacs runs.

The “restore” is just the normal operation of normal
executable loading.

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Why does it work?

All temacs pointers still valid in emacs!

No pointers to old stack
Pointer to text? Same spot in memory
Pointer to globals? Same spot in memory
Pointer to the heap? Same spot in memory

main function in emacs can detect it’s running in a dumped
emacs: initialized global != 0

Re-open file descriptors
Connect to window system
Perform other necessary adjustments

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Unexec address space: just started

0

code data segment stackbloat

virtual addresses

global
vars

heap

executable
file

sbrk grows

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Unexec address space: active process

0

code data segment stackbloat

virtual addresses

global
vars

heap

executable
file

sbrk grows

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Why is unexec a good hack?

Minimal

Complexity is all on the dumping side
Initial implementation from 1982 was only about 300 LOC

Theoretically optimal speed

Surprisingly portable: same basic approach works on
everything from Windows to HP-UX

Surprisingly long-lived: at least 36 years

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Unexec must go

Complexity: now almost 5,000 LOC

Obscure

Most importantly, insecure

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Unexec complexity

Hairy platform-specific code to munge executables

Many different sections and segments compared to a.out’s
two

Random whitelists of dumped section names
What if we miss one? Random crashes

Dynamic linker assumes it sees straight-from-compiler code

Need to “undo” relocations so re-doing them is a no-op
Depends on platform

Daniel Colascione Emacs Portable Dumper

Modern address space

0

code data segment stack

virtual addresses

global
vars

heap

executable
file

mmap
heap

?

??
?

?

?

? = location can vary

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Unexec obscurity

Re-dumping code bitrotted years ago

Unexec relies on internal malloc hooks

malloc state needs separate dump, restore
glibc trying to remove API

Incompatible with modern malloc implementation

Either temacs needs to force malloc to be sbrk-only malloc,
or...
temacs needs to use separate, internal malloc
implementation...
...and switch dynamically. Yuck.

Platforms not designed for unexec, so weird breakages

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Who wants to spend time working around BSS gaps?

/* Warn if the gap between BSS end and heap start is larger than this. */

define MAX_HEAP_BSS_DIFF (1024*1024)

if (heap_bss_diff > MAX_HEAP_BSS_DIFF)

{

fprintf (stderr, "**\n");

fprintf (stderr, "Warning: Your system has a gap between BSS and the\n");

fprintf (stderr, "heap (%"pMu" bytes). This usually means that exec-shield\n",

heap_bss_diff);

fprintf (stderr, "or something similar is in effect. The dump may\n");

fprintf (stderr, "fail because of this. See the section about\n");

fprintf (stderr, "exec-shield in etc/PROBLEMS for more information.\n");

fprintf (stderr, "**\n");

}

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Early computing weirdness
Traditional process execution
Unexec operation
Badness

Security disaster: unexec ˆ ASLR

Unexec requires run-to-run memory layout consistency

Otherwise, dumped pointers are invalid

Address Space Layout Randomization requires address space
layout be different every time

Otherwise, attackers can exploit memory corruption bugs

Unfixable

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

A different kind of dumper

Want to preserve dump model while ditching unexec

Fundamental problem is that pointers need to point different
places on each load

We’ll just teach Emacs to relocate its own pointers

Dump objects, not “the heap”
Record all pointer locations
Munge every pointer on load

Should work on any system with any file format
Need to restrict ourselves to “happy path” of loading

No weird sections
No weird permissions
No weird malloc modes

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

New dump process

After temacs loadup
1 Walk the Emacs heap (just like during GC)
2 Dump raw object contents, struct by struct; remember where

we dumped each
3 Remember each pointer and where it points

If into Emacs, write the offset into Emacs
If into the dump, dump offset of pointed-to object

4 Write the values of all global variables and their offsets relative
to the Emacs executable

5 Write the pointer list to the dump

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

New load process

On emacs startup
1 Very early in main, load or map the dump into memory
2 Walk the list of pointers in the dump and adjust each one

If point into Emacs, adjust by current offset of Emacs
executable
If point into dump, adjust by actual dump load location

3 Set all global values to the values stored in the dump
4 Allow initialization to proceed

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Like an executable if you squint

0 dump offset

H
e
a
d
e
r

Hot Cold

D
is
ca
rd
a
b
le

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Dump section: header

Header Metadata about dump

Magic number
Emacs fingerprint
Table offsets

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Dump section: hot

Hot Primary heap contents

Objects in this section need relocation
Relocations apply here
Mark bit array covers only this section

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Dump section: discardable

Discardable Thrown away after Emacs starts

Shadow objects we copy into Emacs executable
(like symbols)
Relocations apply here too

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Dump section: cold

Cold Things that don’t need relocation and that we can
easily share between Emacs instances

Objects with no internal lisp pointers

Floats
Bool vectors

Pure data

String data
Buffer contents

Relocation tables

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Dump Relocations (1/2)

enum dump_reloc_type

{

/* dump_ptr = dump_ptr + emacs_basis() */

RELOC_DUMP_TO_EMACS_PTR_RAW,

/* dump_ptr = dump_ptr + dump_base */

RELOC_DUMP_TO_DUMP_PTR_RAW,

/* dump_lv = make_lisp_ptr (

dump_lv + dump_base,

type - RELOC_DUMP_TO_DUMP_LV)

(Special case for symbols: make_lisp_symbol)

Must be second-last. */

RELOC_DUMP_TO_DUMP_LV,

/* dump_lv = make_lisp_ptr (

dump_lv + emacs_basis(),

type - RELOC_DUMP_TO_DUMP_LV)

(Special case for symbols: make_lisp_symbol.)

Must be last. */

RELOC_DUMP_TO_EMACS_LV = RELOC_DUMP_TO_DUMP_LV + 8,

};

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Dump Relocations (2/2)

#define DUMP_RELOC_TYPE_BITS 4

#define DUMP_RELOC_ALIGNMENT_BITS 2

#define DUMP_RELOC_OFFSET_BITS \\

(sizeof (dump_off) * CHAR_BIT - DUMP_RELOC_TYPE_BITS)

struct dump_reloc

{

uint32_t raw_offset : DUMP_RELOC_OFFSET_BITS;

ENUM_BF (dump_reloc_type) type : DUMP_RELOC_TYPE_BITS;

};

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Lisp API

dump-emacs-portable Dumps current Emacs image to file

pdumper-stats Returns list describing dump metadata, load
time, etc.

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

dump-emacs-portable operation

Chew through a big queue of objects

Queue initialized with GC roots

Heuristic tries to keep related objects together

“Rubber band” weight attached to each link
Pulls objects from queue into dump

Similar to GC, but actually very different

We can allocate memory during dump
Unlike GC, we care about all of the object, not just lisp fields

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

C API

Global variables: most Just Work

Automatically record each GC root
Automatically record anything DEFVARed
Need to call into pdumper in special cases, e.g., remember a
scalar

Post-dump callback

Call function using pdumper do now and after load from
syms of

In non-pdumper build, calls function right away
In pdumper build, given function automatically called after
dump restore

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Early failures

I implemented this basic dumping strategy

Emacs crashed and burned right away

Refactor and rearrange early init code
Use different GC strategy for pdumped objects
Separate list of object-start relocations for conservative GC
Special treatment of hash tables

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Allocation in normal execution

Emacs allocates popular object types in
blocks

GC zeroes low bits to find header

header

virtual addresses

Block starts here

C
o
n
s

C
o
n
s

C
o
n
s

C
o
n
s

C
o
n
s

C
o
n
s

C
o
n
s

C
o
n
s

Diagram not to scale

Mark
bits

Car Cdr

Cons Cell

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Object layout in pdumper

Pdumper dumps object-by-object
No header: objects of different types can interleave

virtual addresses

C
o
n
s

C
o
n
s

C
o
n
s

C
o
n
s

C
o
n
s

V
e
cto

r
Diagram not to scale

V
e
cto

r

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Making garbage collection work with pdumper

GC crashes when trying to mark pdumper objects

Reads garbage as header
No place to read or write mark bit

Solution: better than original book-keeping approach!

Keep one big bit-array of mark bits for whole pdumper
Simple range check lets GC distinguish dumped objects from
heap objects
Better than individual mark bits: easier to clear; return
memory to OS
No copy-on faults just for GC (better than unexec)

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Conservative GC overview

Emacs used to use precise stack marking via complex CPP
macros

Got rid of them: uses conservative scanning instead

Treats all words on stack as potential pointers into the heap

Detect valid objects by keeping a big red-black tree of known
memory regions

Pdumper has no such memory region tracking: no blocks, no
metadata

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Pdumper introspection

To cooperate with conservative GC, need to be able to find
object-start

Turns out the relocation table is exactly the right data
structure

Fake relocatons that describe object starts and types
Sorted for fast lookup during stack scanning

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Annoying introspection bug

Bug! Early versions validated object start, but forgot to check
object tag bits

Took a few days to find: reproed only occasionally

Would accidentally treat buffer as float or something

Solution is to check both object address and type when
considering a candidate Lisp Object from stack

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

Hash table bug

Some hash tables would retrieve wrong hashed objects

Some objects are identity-hashed: hash code is memory
location

Not feasible to use Java-style identityHashFunction across
dump

But we can rehash hash tables

Negative size: we must rehash

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Introduction
Dump file format
API
Challenges in development

RR is awesome

Aside: RR tool is awesome

From Mozilla: reverse debugging

Record and replay execution

Makes it easy to answer question “who produced this bad
value?”

Probably halved pdumper development time

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Demand paging
Non-PIC mode

Demand paging?

Dump relocated all at once on startup

What if we could relocate each page as needed? Start in
microseconds!

Can hook SIGSEGV and run code just before we read a dump
page

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Demand paging
Non-PIC mode

Demand paging? Not worth it

I wasted a lot of time implementing demand paging. It’s
useless!

Why?

We GC a ton
GC doesn’t COW, but it does have to load pages read-only
Relocated pages are then COWed
First GC touches 90% of dump anyway
Might as well get startup over with: only takes a few dozen
milliseconds

No clear way to traverse GC graph in much less space than
heap itself

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Demand paging
Non-PIC mode

Fast non-PIC startup?

Portable dump works great for randomized address space

Works fine for old-fashioned non-randomized address space
too, but wasteful

Unnecessarily relocates: relocated data known ahead of time
Unnecessarily takes COW faults during relocation

Idea: if we know memory layout in advance, just write correct
values directly to dump

Save 6MB or so plus a few dozen milliseconds on startup

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Demand paging
Non-PIC mode

Fast non-PIC startup? Not worth it

Turns out non-PIC mode isn’t worth it

Regular code is surprisingly fast

Hard to justify PIC mode complexity

Hard to guarantee fixed address even without PIC

Can still implement non-PIC mode if needed, but probably
won’t be

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Demand paging
Non-PIC mode

Portable dump inside Emacs executable?

Pdump dump is a separate file

Separate file is annoying: can become mismatched

Every known OS supports appending a blob to the end of an
executable

On startup, Emacs would open itself, seek to end, read
header, seek to real header, load

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Demand paging
Non-PIC mode

Portable dump inside Emacs executable? Not worth it

Turns out, strip(1) removes the dump from the file

Appending dump would disturb digital signature: we don’t
sign now, but might one day

Daniel Colascione Emacs Portable Dumper

Motivation
Unexec: a wonderful hack

Portable dumper
Sounded good: didn’t work

Demand paging
Non-PIC mode

Questions

Questions

Daniel Colascione Emacs Portable Dumper

	Motivation
	What is Emacs?
	Building and dumping
	Performance
	Modernization Project

	Unexec: a wonderful hack
	Early computing weirdness
	Traditional process execution
	Unexec operation
	Badness

	Portable dumper
	Introduction
	Dump file format
	API
	Challenges in development

	Sounded good: didn't work
	Demand paging
	Non-PIC mode

